Synthesis of Diphenylphosphido-bridged Manganese-Gold Complexes. Crystal Structures of $[N(PPh_3)_2][Au_2Mn(\mu-PPh_2)_2(CO)_4(C_6F_5)_2]$ and $[Au_2Mn_2(\mu-PPh_2)_4-(CO)_8]^{\ddagger}$

Gabino A. Carriedo, Victor Riera,* and M. L. Rodríguez

Departamento de Química Organometálica, Facultad de Química, Universidad de Oviedo, 33071 Oviedo, Spain

Peter G. Jones * t and Jürgen Lautner

Institut für Anorganische Chemie der Universität, Tammannstrasse 4, 3400 Göttingen, Federal Republic of Germany

The complexes $[L_n Mn(\mu-PPh_2)AuX]^z [L_n = (CO)_5 \text{ or } (CO)_3(\text{bipy}) (\text{bipy} = 2,2'-\text{bipyridine});$ $X = P(C_6H_4Me-4)_3, z = 1, \text{ perchlorate salt or } X = C_6F_5, z = 0], [(OC)_4Mn(\mu-PPh_2)_2(AuX)_2]^z [X = P(C_6H_4Me-4)_3 \text{ or } PPh_3, z = 1, \text{ perchlorate salt; } X = C_6F_5, z = -1, N(PPh_3)_2^+ \text{ salt}], [L_nMn(\mu-PPh_2)Au(\mu-PPh_2)MnL_n]A [L_n = (CO)_5, A = CIO_4; \text{ or } L_n = (CO)_3(\text{bipy}), A = PF_6], \text{ and } [Au_2Mn_2-(\mu-PPh_2)_4(CO)_8] \text{ have been prepared from the corresponding salts } [Mn(PHPh_2)_yL_n]A (y = 1 \text{ or } 2)$ by reaction with $[AuCI(PR_3)] (R = C_6H_4Me-4 \text{ or } Ph), [Au(C_6F_5)(tht)] \text{ or } [AuCI(tht)] (tht = tetra-hydrothiophene) in the presence of appropriate proportions of K(acac), TI(acac), or <math>[N(PPh_3)_2]$ - $[acac] (acac = acetylacetonate), or mixtures of these reagents. The compounds <math>[N(PPh_3)_2][Au_2Mn-(\mu-PPh_2)_2(CO)_4(C_6F_5)_2]$ and $[Au_2Mn_2(\mu-PPh_2)_4(CO)_8]$ have been characterized by X-ray diffraction; both display short Au··· Au interactions.

We have reported ¹ the preparation of a series of octahedral manganese carbonyls of the type $[Mn(PHPh_2)_n(CO)_{6-n}]ClO_4$ (n = 1 - 4). Their cationic nature suggested the possibility of deprotonation of the co-ordinated PHPh₂ ligand, thus providing a synthetic route to new μ -PPh₂ species. As candidates to replace the H⁺, we chose the gold(I) fragments Au(PR₃)⁺, Au(C₆F₅), and 'Au⁺,' accessible from $[AuCl(PR_3)]$ [Au(C₆F₅)(tht)], or [AuCl(tht)] (tht = tetrahydrothiophene); this led to the preparation of several neutral, cationic, and anionic complexes containing Mn(μ -PPh₂Au)₂ groups. Some related AgL⁺ derivatives of [M(PHPh_2)_2(CO)_5] (M = Cr, Mo, or W) have recently been described.²

Results and Discussion

The complex $[Mn(PHPh_2)(CO)_5]ClO_4$ (1) reacted rapidly at room temperature with $[Au(C_6F_5)(tht)]$ in the presence of K(acac) (acac = acetylacetonate) to give the neutral species $[AuMn(\mu-PPh_2)(CO)_5(C_6F_5)]$ (2). Similarly, the salt *fac*- $[Mn(PHPh_2)(CO)_3(bipy)]ClO_4$ (bipy = 2,2'-bipyridine) (3a) gave $[AuMn(\mu-PPh_2)(CO)_3(bipy)(C_6F_5)]$ (4). The analytical and spectroscopic data were consistent with this formulation (see Table 1 and the Experimental section). In particular, the low ³¹P chemical shift of the μ -PPh₂ ligand implied the absence of a metal metal bond.³

The complex (3b) (the PF₆ salt corresponding to 3a) also

reacted readily with $[AuCl(PR_3)]$ ($R = C_6H_4Me-4$) in the presence of Tl(acac) to give the cationic species $[AuMn(\mu-PPh_2)(CO)_3(bipy)(PR_3)]^+$ as its PF₆ salt (5). In contrast, however, the reaction between complex (1), $[AuCl(PR_3)]$, and Tl(acac) led to the 'symmetric' products $[AuMn_2(\mu-PPh_2)_2-(CO)_{10}]ClO_4$ (6) and $[Au(PR_3)_2]ClO_4$; this was confirmed by preparing (6) directly from (1), [AuCl(tht)], K(acac), and Tl(acac) in a molar ratio 2:1:1:1. It is probable that the reaction of (1) with $[AuCl(PR_3)]$ and Tl(acac) initially gives the mixed product $[AuMn(\mu-PPh_2)(CO)_5(PR_3)]ClO_4$, analogous to (5), which is subsequently converted into (6) and $[Au(PR_3)_2]ClO_4$ by a symmetrization reaction of a type common in gold(1) chemistry.⁴

We found no evidence for the symmetrization of complex (5) in solution [the molar conductance of (2) and (4) in acetone showed that those neutral species also do not symmetrize], but the compound $[Au\{Mn(\mu-PPh_2)(CO)_3(bipy)\}_2]ClO_4$ (7) could be prepared from (3a) by the same method that gave (6) from (1).

The bis(diphenylphosphine) cationic complex [Mn- $(PHPh_2)_2(CO)_4$ CO₄ (8) reacted with 2 equivalents of $[Au(C_6F_5)(tht)]$ in the presence of a mixture of K(acac) and $[N(PPh_3)_2][acac]$ to give the stable anionic complex $[Au_2Mn_3]$ $(\mu$ -PPh₂)₂(\vec{CO})₄(\vec{C}_6F_5)₂]⁻ as its N(PPh₃)₂⁺ salt (9). The³¹P n.m.r. spectrum gave no indication of an Au · · · Au interaction, and the structure was therefore determined by X-ray diffraction (see Figure 1). In the solid state there is indeed a short Au · · · Au contact of 3.049 Å, a feature common in gold(1) complexes and regarded as a weakly stabilizing interaction.⁵ The co-ordination geometry at gold is somewhat distorted from the ideally linear, with C-Au-P 173.4 and 173.7°. The Au-P bonds are long (2.313 and 2.322 Å), as expected for bridging phosphide ligands; however, no non-bridging phosphide-gold bond lengths are available for comparison. In the anion $[(AuBr)_2PPh_2]^-$ the Au-P bond length is much shorter at 2.243(3) Å, but the bromide ligands exert a much weaker trans influence.6 The coordination axes at gold are not parallel and the molecule thus displays a 'twisted' conformation [cf. complex (11), see below]. The C_6F_5 rings display the usual narrow angles at the *ipso* carbons (114.8 and 114.2°).7

The cationic complexes $[Au_2Mn(\mu-PPh_2)_2(CO)_4(PR_3)_2]^+$ (as ClO₄⁻⁻ salts; **10a**, R = C₆H₄Me-4; **10b**, R = Ph) analogous

[†] Present address: Institut für Anorganische und Analytische Chemie der Technischen Universität, Hagenring 30, 3300 Braunschweig, Federal Republic of Germany.

 $[\]ddagger$ Bis(triphenylphosphine)iminium 2,2,2,2-tetracarbonyl-1,2;2,3-bis(µ-diphenylphosphido)-1,3-bis(pentafluorophenyl)-1,3-digold-2-manganate and 2,2,2,2,4,4,4,4-octacarbonyl-1,2;1,4;2,3;3,4-tetrakis(µ-diphenylphosphido)-1,3-digold-2,4-dimanganese.

Supplementary data available: Complete bond lengths and angles, thermal parameters, structure factors, and H-atom co-ordinates can be obtained from the Fachinformationszentrum Energie Physik Mathematik, 7514 Eggenstein-Leopoldshafen 2, Federal Republic of Germany by quoting a full literature citation and the reference number CSD 53289.

	Analysis ($\stackrel{0}{\circ}_{0}$) ^b				
Compound	(°C)	С	Н	N	$v_{max}(CO)^c/cm^{-1}$
(2) $[AuMn(\mu-PPh_2)(CO)_5(C_6F_5)]$	108	36.8(37.1)	1.15(1.35)		2 130m, 2 038s ^d
(4) $[AuMn(\mu-PPh_2)(CO)_3(bipy)(C_6F_5)]$	140	44.5(44.1)	2.40(2.15)	3.15(3.30)	2 020s, 1 938s, 1 916s
(5) $[AuMn(\mu-PPh_2)(CO)_3(bipy)\{P(C_6H_4Me-4)_3\}]PF_6$	101	50.0(49.0)	3.85(3.45)	2.40(2.50)	2 030s, 1 948s, 1 922s
(6) $[AuMn_2(\mu-PPh_2)_2(CO)_{10}]ClO_4$	140	38.9(38.6)	2.00(1.90)		2 132m, 2 045s
(7) $[AuMn_2(\mu-PPh_2)_2(CO)_6(bipy)_2]ClO_4$	120	47.5(47.8)	2.95(2.85)	4.30(4.45)	2 028s, 1 945s, 1 921s
(9) $[N(PPh_3)_2][Au_2Mn(\mu-PPh_2)_2(CO)_4(C_6F_5)_2]$	138	50.8(50.6)	3.05(2.75)	0.80(0.75)	2 062m, 1 985s, 1 947m
(10a) $[Au_2Mn(\mu-PPh_2)_2(CO)_4]P(C_6H_4Me-4)_3]_2]ClO_4$	135	51.3(51.3)	3.80(3.80)		2 075s, 2 003s, 1 987vs, 1 974s
(10b) $[Au_2Mn(\mu-PPh_2)_2(CO)_4(PPh_3)_2]ClO_4$	140	50.3(49.4)	3.30(3.20)		2 082s, 2 003s, 1 987vs, 1 974s
(11) $[Au_2Mn_2(\mu-PPh_2)_4(CO)_8]$	170	46.2(45.8)	2.80(2.70)		2 065s, 1 998(sh), 1 982vs, 1 962s
" With decomposition. ^b Calculated values are given in paren	theses. c	In CH ₂ Cl ₂ so	olution. ^d In h	exane: 2 125v	v, 2 040s, and 2 025vs cm^{-1} .

Table 1. Analytical and physical data for the AuMn complexes

Ph

0

CIO_

°c.

640

(11)

Figure 1. The cation of (9), showing the atom numbering scheme; H atoms omitted, radii arbitrary. Selected bond lengths (Å) and angles (°): Au(1)-P(1) 2.313(2), Au(1)-C(11) 2.063(6), Au(2)-P(2) 2.322(1), Au(2)-C(21) 2.073(5), Mn-P(1) 2.406(1), Mn-P(2) 2.404(1), Mn-C(1) 1.844(5), Mn-C(2) 1.809(8), Mn-C(3) 1.813(5), and Mn-C(4) 1.849(4); P(1)-Au(1)-C(11) 173.4(2), P(2)-Au(2)-C(21) 173.7(1), Au(1)-P(1)-Mn 121.9(1), and Au(2)-P(2)-Mn 122.1(1). Non-bonded contact: $Au(1) \cdots Au(2) 3.049(1)$

Figure 2. The molecule of (11) in the crystal, showing the atom numbering scheme; radii arbitrary, H atoms omitted. Selected bond lengths (A) and angles (°): Au(1)–P(21) 2.341(3), Au(1)–P(11) 2.335(3), Au(2)–P(22) 2.338(3), Au(2)–P(12) 2.332(3), Mn(1)–P(11) 2.392(3), Mn(1)–P(12) 2.393(3). Mn(2)–P(21) 2.419(4), Mn(2)–P(22) 2.410(3), Mn(1)–C(11) 1.826(12), Mn(1)–C(12) 1.817(14), Mn(1)–C(13) 1.834(12), Mn(1)–C(14) 1.842(13), Mn(2)–C(21) 1.859(15), Mn(2)–C(22) 1.834(18), Mn(2)–C(23) 1.820(17), and Mn(2)–C(24) 1.864(13); P(11)–Au(1)–P(21) 173.8(1), P(21)–Au(2)–P(22) 168.3(1), Au(1)–P(11)–Mn(1) 120.9(1). Au(1)–P(21)–Mn(2) 113.8(2), Au(2)–P(12)–Mn(1) 121.3(1), and Au(2)–P(22)–Mn(2) 124.1(1). Non-bonded contact: Au(1) ··· Au(2) 2.855(1)

to (9) could also be prepared from (8) and $[AuCl(PR_3)]$ (2 equivalents) in the presence of Tl(acac) (2 equivalents). Our attempts to obtain crystals suitable for X-ray structure determination were unsuccessful; nevertheless, the ³¹P n.m.r.

Figure 3. The eight-membered central ring of complex (11), viewed approximately along the Au \cdots Au vector and showing the 'twist' conformation

spectra indicated a possible Au · · · Au interaction, because the pattern of the multiplets was consistent with an AA'BB' spin system with a finite coupling between the PPh₃ groups. The attempted crystallizations occasionally yielded crystals of $[Au(PR_3)_2]ClO_4$, but we found no clear evidence for symmetrization processes in solution; the gold phosphine complexes might have arisen during the syntheses. However, the reaction of (8) with [AuCl(tht)] (2 equivalents) in the presence of K(acac) (2 equivalents) gave a solution of the anionic tetracarbonyl complex $[Mn(CO)_4(PPh_2AuCl)_2]^+$, analogous to (9) [i.r. in CH_2Cl_2 : 2 055s, 1 998(sh), 1 979vs, and 1 953s cm⁻¹], which was not isolated but was treated with 1 equivalent of (8) and two of Tl(acac) to give the very stable neutral complex $[Au_2Mn_2(\mu-PPh_2)_4(CO)_8]$ (11).

The crystal structure analysis of (11) (Figure 2) confirms the presence of the eight-membered ring. This feature generally promotes short Au \cdots Au contacts,⁵ and a particularly short contact of 2.855 Å is observed here. The Au–P bonds are slightly longer than in (9) (2.332–2.341 Å) and the deviation from linearity at Au(2) is marked [P–Au–P 168.3 and 173.8° for Au(2) and Au(1) respectively]. The ring displays a twisted conformation (Figure 3).

The above preparations could also be performed by deprotonating the PHPh₂ ligands with LiBu (at low temperature).⁸ but the use of the acac derivatives was very convenient; the desired products could be obtained in one-pot reactions by using suitable proportions of the reagents. Thallium acetylacetonate had the additional advantage of eliminating Cl⁻ ions.

Experimental

All reactions were carried out under dry nitrogen, using Schlenk techniques and purified solvents. The i.r. spectra were recorded with a Perkin-Elmer 298 spectrophotometer. N.m.r. spectra were recorded on Varian FT-80A and Bruker AC-300 instruments: ¹H in CDCl₃ relative to SiMe₄, proton-decoupled ³¹P in CH₂Cl₂ relative to external 85% H₃PO₄, and ¹⁹F in CH₂Cl₂ relative to external CFCl₃. The molar conductivities (A) were measured in 5×10^{-4} mol dm⁻³ solution in acetone (not under N₂) and are quoted in Ω^{-1} cm² mol⁻¹.

The starting materials $[Mn(PHPh_2)(CO)_5]ClO_4$, 1 *fac*- $[Mn(PHPh_2)(CO)_3(bipy)]ClO_4$ (or PF₆), 1 $[Mn(PHPh_2)_2(CO)_4]$ -ClO₄, 1 [AuCl(tht)], 9 and $[Au(C_6F_5)(tht)]^9$ were prepared as described elsewhere. The salts M(acac) (M = K or Tl) were prepared from KOH or Tl₂CO₃.¹⁰ The salt $[N(PPh_3)_2][acac]$ was used directly as prepared by stirring a 1:1 molar mixture of Tl(acac) and $[N(PPh_3)_2]Cl$ in CH₂Cl₂ overnight, filtering, and drying *in vacuo*.

[AuMn(μ -PPh₂)(CO)₅(C₆F₅)] (2).—To a vigorously stirred suspension of K(acac) (0.046 g, 0.333 mmol) in CH₂Cl₂ (15 cm³) were added [Au(C₆F₅)(tht)] (0.15 g, 0.333 mmol) and [Mn(PHPh₂)(CO)₅]ClO₄ (0.16 g, 0.333 mmol). After 5 min, the volatiles were removed and the residue extracted with diethyl ether–hexane (1:1 4 × 20 cm³). The extracts were filtered, concentrated *in vacuo* to *ca*. 6 cm³, and cooled to give yellow microcrystalline (2) (0.13 g, 53%). I.r. (Nujol): 1 490s, 1 050w, and 952vs cm⁻¹ (C₆F₅). N.m.r.: ³¹P, 11.0 (vbr, μ -PPh₂); ¹⁹F, -130.3 (m, 2 F), -173.5 (m, 1F), and -176.9 p.p.m. (m, 2 F) (C₆F₅). Λ = 5.7.

[AuMn(μ -PPh₂)(CO)₃(bipy)(C₆F₅)] (4).—To a vigorously stirred suspension of K(acac) (0.057 g, 0.415 mmol) in CH₂Cl₂ (15 cm³) were added [Au(C₆F₅)(tht)] (0.188 g, 0.415 mmol) and *fac*-[Mn(PHPh₂)(CO)₃(bipy)]ClO₄ (0.241 g, 0.415 mmol). After 60 min the volatiles were removed *in vacuo*. The residue was extracted (4 × 20 cm³) with diethyl ether–hexane (1:1) and the extracts filtered and concentrated to *ca*. 5 cm³ to give complex (4) as a solid that was recrystallized from hexane– diethyl ether as brown-yellow microcrystals (0.18 g, 51.3%). I.r.

(Nujol): 1 490s, 1 050w, and 952w cm⁻¹ (C_6F_5). N.m.r.: ³¹P, 59.5 (μ -PPh₂); ¹⁹F, -115 (m, 2F), -161 (m, 1F), and -163 p.p.m. (m, 2F) (C_6F_5). $\Lambda = 9.6$.

[AuMn(μ -PPh₂)(CO)₃(bipy){P(C₆H₄Me-4)₃}]PF₆ (5).—To a solution of [Mn(PHPh₂)(CO)₃(bipy)]PF₆ (0.222 g, 0.350 mmol) in acetone (20 cm³) were added [AuCl{P(C₆H₄Me-4)₃}] (0.190 g, 0.35 mmol) and Tl(acac) (0.108 g, 0.35 mmol). After 10 min the solution was filtered and concentrated *in vacuo* to *ca*. 4 cm³. Addition of an excess of hexane gave brown-yellow microcrystals of complex (**5**) (0.33 g, 83%). I.r. (Nujol): 837s cm⁻¹ (PF₆). N.m.r.: ¹H, 8.61, 8.22, 7.75, 7.19 (vbr, C₆H₅, C₆H₄, bipy), and 2.40 (s, Me-4). ³¹P (-60 °C), 53.8 p.p.m. [AB_q, $\delta_A =$ 42.6 (μ -PPh₂), $\delta_B = 65.1$ (PR₃), $J_{AB} = 249$]; some samples

Table 2. Atomic co-ordinates $(\times 10^4)$ for compound (9)

Atom	X	r	<i>Ξ</i>	Atom	X	<u>.</u> V	Ξ
Au(1)	2 556.7(1)	2 013.9(1)	2 828.2(1)	O(1)	4 606(3)	-782(3)	3 047(2)
Au(2)	3 835.5(1)	3 101.4(1)	1 746.2(1)	C(2)	3 274(4)	-124(4)	1 175(4)
C(11)	2 459(3)	2 620(3)	3 673(3)	O(2)	2 883(4)	-563(4)	1011(3)
C(12)	1 728(4)	3 453(4)	3 614(3)	C(3)	4 971(4)	-7(4)	1 031(3)
C(13)	1 663(4)	3 904(4)	4 148(4)	O(3)	5 650(3)	-452(3)	860(2)
C(14)	2 328(5)	3 515(5)	4 771(3)	C(4)	3 410(3)	1 583(4)	349(3)
C(15)	3 063(4)	2 681(5)	4 863(3)	O(4)	3 105(3)	2 1 5 2 (3)	-274(2)
C(16)	3 115(3)	2 257(4)	4 314(3)	P(3)	8 049(1)	3 125(1)	3 860(1)
F(12)	1 040(2)	3 879(2)	3 000(2)	P(4)	6 905(1)	5 236(1)	3 010(1)
F(13)	927(3)	4 718(3)	4 061(2)	N	7 379(3)	4 198(3)	3 713(2)
F(14)	2 251(3)	3 945(3)	5 303(2)	C(71)	9 107(3)	2 856(3)	4 463(3)
F(15)	3 726(3)	2 292(3)	5 485(2)	C(72)	9 939(3)	2 142(4)	4 475(3)
F(16)	3 863(2)	1 437(3)	4 4 3 9 (2)	C(73)	10 701(4)	1 916(5)	4 992(3)
C(21)	3 240(3)	4 294(3)	2 062(3)	C(74)	10 640(4)	2 386(5)	5 494(3)
C(22)	2 4 3 4 (3)	5 058(4)	1 701(3)	C(75)	9 838(5)	3 107(4)	5 476(3)
C(23)	1 999(4)	5 767(4)	1 984(4)	C(76)	9 056(4)	3 339(4)	4 963(3)
C(24)	2 382(5)	5 743(4)	2 657(4)	C(81)	7 479(3)	2 229(3)	4 4 3 0 (3)
C(25)	3 193(5)	5 008(5)	3 050(3)	C(82)	7 991(4)	1 263(4)	4 900(3)
C(26)	3 603(3)	4 304(4)	2 742(3)	C(83)	7 523(6)	589(5)	5 341(3)
F(22)	2021(2)	5 133(2)	1014(2)	C(84)	6 570(6)	871(6)	5 315(4)
F(23)	1 194(3)	6 494(3)	1 600(3)	C(85)	6 050(5)	1 832(6)	4 838(5)
F(24)	1 954(3)	6 431(3)	2 958(3)	C(86)	6 505(4)	2 498(4)	4 410(3)
F(25)	3 559(3)	4 962(3)	3 728(2)	C(91)	8 386(3)	2 944(3)	2 954(3)
F(26)	4 394(2)	3 582(2)	3 163(2)	C(92)	7 912(4)	2503(4)	2 644(3)
P(1)	2.497(1)	1 315(1)	1 920(1)	C(93)	8 075(5)	2 481(6)	1 897(4)
P(2)	4 654(1)	1 735(1)	1.471(1)	C(94)	8 708(5)	2 903(6)	1 447(4)
C(31)	1 815(3)	458(3)	2 431(3)	C(95)	9 185(4)	3 343(5)	1 731(3)
C(32)	2 185(4)	-564(3)	2 716(3)	C(96)	9 034(3)	3372(4)	2 493(3)
C(33)	1 624(5)	-1151(4)	3 125(4)	C(101)	6 595(3)	5 194(3)	2 083(3)
C(34)	720(5)	-753(5)	3 255(4)	C(102)	7.015(3)	5 574(3)	1.382(3)
C(35)	358(4)	263(5)	3 004(4)	C(103)	6 718(4)	5 566(4)	672(3)
C(36)	905(4)	861(4)	2 589(3)	C(104)	6 012(4)	5 183(4)	655(3)
C(41)	1 651(3)	2241(3)	1 070(3)	C(105)	5 597(4)	4 782(4)	1 349(3)
C(42)	1 153(3)	1 974(4)	618(3)	C(106)	5 896(3)	4 781(4)	2 066(3)
C(43)	603(4)	2 670(5)	-71(3)	C(111)	5 830(3)	5 834(3)	3344(3)
C(44)	535(4)	3 643(5)	-321(3)	C(112)	5 802(4)	5715(4)	4 1 3 2 (3)
C(45)	1 027(3)	3 931(4)	118(3)	C(113)	4 987(4)	6 218(5)	4 391(3)
C(46)	1 578(3)	3 230(3)	813(3)	C(114)	4 228(4)	6 839(4)	3 858(4)
C(51)	5 349(3)	2 193(3)	622(3)	C(115)	4 253(4)	6 950(4)	3 074(4)
C(52)	5 893(3)	2 758(4)	681(3)	C(116)	5 046(4)	6 462(4)	2 804(3)
C(53)	6 446(4)	3 132(5)	75(4)	C(121)	7 624(3)	6 039(4)	2781(3)
C(54)	6 439(5)	2 948(6)	-613(4)	C(122)	8 588(4)	5 667(5)	2 972(3)
C(55)	5 921(4)	2 410(4)	-693(3)	C(123)	9 137(5)	6 295(6)	2 749(4)
C(56)	5 385(4)	2022(4)	-80(3)	C(124)	8 718(6)	7 285(6)	2 358(5)
C(61)	5 601(3)	1 023(3)	2 283(3)	C(125)	7 779(6)	7 663(5)	2 174(5)
C(62)	5 398(4)	937(4)	3 065(3)	C(126)	7 224(5)	7 042(4)	2 384(4)
C(63)	6 078(6)	372(5)	3 692(4)	O(200)	318(16)	9(19)	9 805(14)
C(64)	6 964(7)	-98(6)	3 565(5)	C(201)	628(16)	-170(17)	9 066(13)
C(65)	7 182(5)	-40(5)	2 812(5)	C(202)	- 196(16)	806(17)	8 691(14)
C(66)	6 488(4)	523(4)	2 162(4)	C(203)	1 510(16)	-83(16)	9 415(14)
Mn	3 892.8(5)	621.7(5)	1 359.6(4)	C(204)	1 212(20)	-1.142(18)	9 732(16)
C(1)	4 324(4)	-236(4)	2 409(3)	· · ·		· /	. ,

showed a weak peak at 42.0 p.p.m. due to $[Au{P(C_6H_4Me-4)_3]_2}]PF_6$. $\Lambda = 132.5$.

[AuMn₂(μ -PPh₂)₂(CO)₁₀]ClO₄ (6).—To a mixture of [Mn-(PHPh₂)(CO)₅]ClO₄ (0.299 g, 0.622 mmol) and [AuCl(tht)] (0.099 g, 0.308 mmol) in acetone (15 cm³) was added with stirring Tl(acac) (0.189 g, 0.622 mmol). After 5 min the mixture was filtered and the filtrate was concentrated *in vacuo* to *ca*. 4 cm³. Addition of an excess of diethyl ether gave complex (6) as a white precipitate that was washed with ether and dried *in vacuo* (0.162 g, 49.3°₀). I.r. (Nujol): 1 100s, br cm⁻¹ (ClO₄). ³¹P N.m.r. (-40 °C): 20.9 p.p.m. (s, μ -PPh₂). $\Lambda = 139.7$.

[AuMn₂(μ -PPh₂)₂(CO)₆(bipy)₂]ClO₄ (7).—To a mixture of *fac*-[Mn(PHPh₂)(CO)₃(bipy)]ClO₄ (0.182 g, 0.313 mmol) and [AuCl(tht)] (0.050 g, 0.155 mmol) in acetone (15 cm³) was added Tl(acac) (0.095 g, 0.313 mmol). After 40 min (although the reaction was completed almost instantly), the mixture was filtered, concentrated to *ca*. 4 cm³, and mixed with an excess of diethyl ether to give complex (7) as a orange-brown solid (0.15 g, 76°₀). I.r. (Nujol): 1 100 cm⁻¹ (ClO₄). ³¹P N.m.r.: 58.9 p.p.m. (μ -PPh₂). $\Lambda = 143$.

 $[N(PPh_3)_2][Au_2Mn(\mu-PPh_2)_2(CO)_4(C_6F_5)_2]$ (9).—To a solid mixture of $[Au(C_6F_5)(tht)](0.15 \text{ g}, 0.33 \text{ mmol})$, K(acac) (0.023 g, 0.166 mmol), and $[N(PPh_3)_2][acac]$ (0.11 g, 0.17 mmol), were added CH₂Cl₂(20 cm³) and $[Mn(PHPh_2)_2(CO)_4]$ -ClO₄ (0.105 g, 0.164 mmol) with stirring. After 15 min, the mixture was filtered and concentrated to *ca.* 4 cm³. Addition of

an excess of hexane gave complex (9) as a precipitate that was recrystallized from CH_2Cl_2 -hexane as yellow microcrystals (0.153 g, 52%). I.r. (Nujol): 1 490m, 1 050m, and 952s cm⁻¹ (C₆F₅). N.m.r.: ³¹P (-60 °C), 32.6 (br, μ -PPh₂) and 21.8 [s, N(PPh₃)₂⁺]; ¹⁹F, -115.7 (m, 2F), -163.7 (m, 1F), and -164.9 p.p.m. (m, 2F) (C₆F₅). $\Lambda = 91$.

[Au₂Mn(μ -PPh₂)₂(CO)₄{P(C₆H₄Me-4)₃}₂]ClO₄ (**10a**).--To a solution of [Mn(PHPh₂)₂(CO)₄]ClO₄ (0.20 g, 0.31 mmol) in acetone (15 cm³) was added [AuCl{P(C₆H₄Me-4)₃}] (0.33 g, 0.61 mmol) and Tl(acac) (0.19 g, 0.62 mmol). After 15 min the solution was filtered and concentrated to *ca*. 4 cm³. Addition of an excess of hexane gave (**10a**) as pale yellow microcrystals (0.40 g, 78%). I.r. (Nujol): 820 {P(C₆H₄Me-4)₃} and 1 100 cm⁻¹ (ClO₄). N.m.r.: ¹H 7.65, 6.99(br) (C₆H₄, C₆H₅), and 2.36 (s, Me-4); ³¹P (-90 °C) AA'BB' m (the part B was very broad and unresolved), δ_A 40 (PR₃), δ_B = 56 p.p.m. (μ -PPh₂), J_{AB} 260, $J_{AA'}$ 5. $J_{BB'}$ 85, and $J_{AB'}$ 0 Hz (linewidth *ca*. 15 Hz). Λ = 143.

The pale yellow compound (10b) was similarly prepared in 45% yield. I.r. (Nujol): 1 100 cm⁻¹ (ClO₄). ³¹ P N.m.r. (-80 °C): AA'BB' m (the part B was very broad and unresolved), δ_A 42 (PR₃), δ_B 57 p.p.m. (μ -PPh₂), J_{AB} 255, J_{AA} 5, $J_{BB'}$ 70, and $J_{AB'}$ 0 (linewidth *ca.* 15 Hz). $\Lambda = 124$.

 $[Au_2Mn_2(\mu$ -PPh₂)₄(CO)₈] (11).—A mixture of [Mn-(PHPh₂)₂(CO)₄]ClO₄ (0.087 g, 0.136 mmol), [AuCl(tht)] (0.087 g, 0.272 mmol), and K(acac) (0.038 g, 0.272 mmol) in CH₂Cl₂ (15 cm³) was vigorously stirred for 10 min. More [Mn(PHPh₂)₂(CO)₄]ClO₄ (0.087 g, 0.136 mmol) and Tl(acac)

Table 3. Atomic co-ordinates ($\times 10^4$) for compound (11)

Atom	Х	ŗ	Ź	Atom	N	у.	t
Au(1)	2 173.3(2)	1 393.4(4)	974.8(1)	C(516)	2 021(8)	5 361(12)	2 741(5)
Au(2)	2 968.2(2)	3 373.0(4)	1 501.7(1)	C(521)	1 905(7)	5 571(11)	1 527(4)
Mn(1)	4 133(1)	1 906(2)	485.0(6)	C(522)	1 449(8)	5 748(13)	1 061(5)
Mn(2)	813(1)	2 966(2)	1 769.7(6)	C(523)	1 509(9)	6 806(15)	785(6)
P(11)	2 834(2)	1 523(3)	319(1)	C(524)	2 020(8)	7 675(15)	975(5)
C(311)	2 539(6)	99(9)	-29(3)	C(525)	2 456(9)	7 578(17)	1 444(6)
C(312)	1 801(7)	26(12)	-267(4)	C(526)	2 385(8)	6 469(13)	1 709(5)
C(313)	1 529(8)	-1.048(13)	- 507(5)	P(12)	4 079(2)	3 071(3)	1 225(1)
C(314)	1 992(7)	-2037(13)	-495(4)	C(411)	4 729(6)	2 606(10)	1 799(3)
C(315)	2 701(7)	-1992(12)	-261(4)	C(412)	5 261(7)	1 702(11)	1 817(4)
C(316)	2 983(7)	-910(11)	-27(4)	C(413)	5 701(8)	1 433(13)	2 276(5)
C(321)	2 362(6)	2 666(11)	-125(4)	C(414)	5 602(8)	1 999(14)	2 707(5)
C(322)	2 408(7)	2 610(13)	-628(4)	C(415)	5 103(8)	2 904(14)	2 700(5)
C(323)	2 098(9)	3 510(14)	-963(6)	C(416)	4 665(7)	3 181(12)	2 243(4)
C(324)	1 729(9)	4 436(16)	- 793(6)	C(421)	4 416(6)	4 629(10)	1 143(3)
C(325)	1 677(10)	4 508(17)	- 291(6)	C(422)	5 162(7)	4 897(12)	1 233(4)
C(326)	1 989(7)	3 631(12)	47(5)	C(423)	5 409(9)	6 084(13)	1 160(5)
P(21)	1 421(2)	1 126(3)	1 576(1)	C(424)	4 915(8)	6 941(14)	976(5)
C(611)	1 975(7)	385(12)	2 126(4)	C(425)	4 168(8)	6 718(13)	886(5)
C(612)	2 734(8)	408(14)	2 185(5)	C(426)	3 925(7)	5 530(11)	960(4)
C(613)	3 170(11)	-200(17)	2 586(6)	C(11)	4 211(6)	1 056(11)	- 83(4)
C(614)	2 854(11)	- 779(17)	2 935(6)	O(11)	4 307(5)	601(8)	- 442(3)
C(615)	2 129(11)	- 764(17)	2 895(6)	C(12)	5 121(7)	2 180(12)	595(4)
C(616)	1 665(11)	-173(16)	2 494(6)	O(12)	5 748(5)	2 365(10)	659(4)
C(621)	734(7)	- 16(11)	1 300(4)	C(13)	3 990(7)	3 339(11)	134(4)
C(622)	358(14)	-771(24)	1 574(9)	O(13)	3 891(6)	4 202(8)	-94(3)
C(623)	-140(15)	-1 644(24)	1 299(10)	C(14)	4 171(7)	545(12)	886(4)
C(624)	~ 255(10)	-1781(17)	815(7)	O(14)	4 158(6)	256(8)	1 143(3)
C(625)	127(10)	-1 092(16)	557(7)	C(21)	559(8)	3 114(14)	1 074(6)
C(626)	604(8)	-204(13)	805(5)	O(21)	374(6)	3 131(10)	655(3)
P(22)	1 957(2)	4 065(3)	1 831(1)	C(22)	-61(10)	2 175(16)	1 772(6)
C(511)	2 322(6)	4 416(10)	2 497(4)	O(22)	-615(7)	1 742(17)	1 788(5)
C(512)	2 871(7)	3 751(11)	2 769(4)	C(23)	378(9)	4 402(15)	1 878(5)
C(513)	3 148(7)	4 024(12)	3 277(5)	O(23)	128(7)	5 305(13)	1 969(5)
C(514)	2 863(8)	4 933(12)	3 508(5)	C(24)	1 104(8)	2 635(13)	2 454(5)
C(515)	2 295(8)	5 579(14)	3 251(5)	O(24)	1 239(6)	2 388(11)	2 865(3)

(0.0826 g, 0.272 mmol) were added and stirring was continued for 90 min. The mixture was filtered and concentrated to *ca*. 4 cm³. Addition of an excess of hexane gave yellow microcrystals of complex (11) (0.102 g, 51.0%). ³¹P N.m.r. (-50 °C): 28.2 p.p.m. (μ -PPh₂). $\Lambda = 4.8$.

X-Ray Structure Determination of Complex (9).—Pale yellow prisms were obtained by diffusion of di-isopropyl ether into a dichloromethane solution. The crystals cracked on exposure to air and were therefore sealed in glass capillaries for X-ray investigations. They proved to contain half an ether molecule per asymmetric unit.

Crystal data. $C_{36}H_{30}NP_2^+ C_{40}H_{20}Au_2F_{10}MnO_4P_2^-0.5-C_6H_{14}O$, M = 1.855, triclinic, space group P1, a = 14.900(4), b = 15.462(4), c = 18.110(5) Å, $\alpha = 66.87(2)$, $\beta = 87.18(2)$, $\gamma = 72.23(2)^\circ$, U = 3.641.6 Å³, Z = 2, $D_c = 1.69$ Mg m⁻³, F(000) = 1.814, $\lambda(Mo-K_2) = 0.710.69$ Å, $\mu = 4.3$ mm⁻¹, crystal size 0.8 × 0.3 × 0.15 mm.

Data collection and processing. Stoe-Siemens four-circle diffractometer in profile-fitting mode¹¹ with monochromated Mo- K_{α} radiation. 13 710 Intensities registered to $2\theta_{max}$. 50°, 12 799 unique (R_{int} 0.023), 10 566 with $F > 4\sigma(F)$ used for all calculations (program system SHELX, locally modified by its author Professor G. M. Sheldrick). Absorption corrections based on ψ scans, with transmission factors 0.58–0.96. Cell constants refined from 20 values of 40 reflections in the range 20–22°.

Structure solution and refinement. Heavy-atom method, followed by blocked full-matrix refinement on *F* to *R* 0.032, *R'* 0.031. All non-H atoms anisotropic except for disordered solvent: H atoms included using a riding model. Weighting scheme $w^{-1} = \sigma^2(F) + 0.0002F^2$. 904 Parameters; *S* 1.4; maximum Δ/σ 0.17 for solvent, otherwise 0.07; maximum $\Delta\rho$ 1 e Å⁻³ in solvent region, 0.6 e Å⁻³ near Au.

Final atomic co-ordinates are presented in Table 2, with selected bond lengths and angles in Figure 1.

X-Ray Structure Determination of Complex (11).—Yellow plates were obtained by diffusion of hexane into a dichloromethane solution.

Crystal data. $C_{56}H_{40}Au_2Mn_2O_8P$, M = 1.469, monoclinic, space group $P2_1/c$, a = 18.448(4), b = 11.004(2), c = 27.024(5)Å, $\beta = 100.67(2)^\circ$, U = 5.391 Å³, Z = 4, $D_c = 1.81$ Mg m⁻³, F(000) = 2.832, $\mu = 6.0$ mm⁻¹, crystal size $0.6 \times 0.25 \times 0.1$ mm, plate face 201. Data collection and processing. As for complex (9) but with the following differences: 10 141 reflections measured, 9 416 unique (R_{int} 0.044), 7 199 with $F > 4\sigma(F)$ used for calculations. Transmission factors 0.39–0.99. Cell constants from 64 reflections in the range 20–25°.

Structure solution and refinement. Heavy-atom method, followed by full-matrix refinement on F to R 0.059, R' 0.055. Atoms Au, Mn, O, and P anisotropic, C isotropic, H included using a riding model. Weighting scheme $w^{-1} = \sigma^2(F) + 0.000 35F^2$; 369 parameters; S 1.8; maximum Δ/σ 0.002; maximum $\Delta\rho$ 1.5 e Å⁻³ near Au.

Final atomic co-ordinates are presented in Table 3, with selected bond lengths and angles in Figure 2.

Additional material available from the Cambridge Crystallographic Data Centre comprises H-atom co-ordinates, thermal parameters, and remaining bond distances and angles.

Acknowledgements

We thank the Fonds der Chemischen Industrie for financial support.

References

- 1 G. A. Carriedo, V. Riera, M. L. Rodriguez, and J. J. Sainz Velicia, *Polyhedron*, 1987, 6, 1879.
- 2 D. Obendorf and P. Peringer, J. Organomet. Chem., 1986, 299, 127.
- 3 M. J. Breen, P. M. Shulman, G. L. Geoffroy, A. L. Rheingold, and W. C. Fultz. Organometallics, 1984, 3, 782.
- 4 R. Usón and A. Laguna. *Coord. Chem. Rev.*, 1986, **70**, 1; A. L. Hormann, G. F. Shaw III, D. W. Bennett, and W. R. Reiff, *Inorg. Chem.*, 1986, **25**, 3953; G. A. Carriedo, D. Miguel, V. Riera, and X. Solans, *J. Chem Soc.*, *Dalton Trans.*, 1987, 2867.
- 5 P. G. Jones, *Gold Bull.*, 1981, **14**, 102; 1983, **16**, 114; 1986, **19**, 46; Y. Jiang, S. Alvarez, and R. Hoffmann, *Inorg. Chem.*, 1985, **24**, 749; H. Schmidbaur, W. Graf, and G. Müller, *Angew. Chem.*, 1988, **100**, 439.
- 6 R. G. Pritchard, D. B. Dyson, R. V. Parish, C. A. McAuliffe, and B. E. Beagley, J. Chem. Soc., Chem. Commun., 1987, 371.
- 7 P. G. Jones, J. Organomet. Chem., 1988, 345, 401.
- 8 W. C. Mercer, R. R. Whittle, E. W. Burkhardt, and G. L. Geoffroy, Organometallics, 1985, 4, 68
- 9 R. Usón, A. Laguna, and J. Vicente, J. Organomet. Chem., 1977, 131, 471.
- 10 W. Fernelius and B. E. Bryant. Inorg. Synth., 1957, 5, 105.
- 11 W. Clegg, Acta Crystallogr., Sect. A, 1981, 37, 22.

Received 4th July 1988; Paper 8/02642D